Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway.
نویسندگان
چکیده
α-Synuclein is an abundant brain protein that binds to lipid membranes and is involved in the recycling of presynaptic vesicles. In Parkinson disease, α-synuclein accumulates in intraneuronal inclusions often containing ubiquitin chains. Here we show that the ubiquitin ligase Nedd4, which functions in the endosomal-lysosomal pathway, robustly ubiquitinates α-synuclein, unlike ligases previously implicated in its degradation. Purified Nedd4 recognizes the carboxyl terminus of α-synuclein (residues 120-133) and attaches K63-linked ubiquitin chains. In human cells, Nedd4 overexpression enhances α-synuclein ubiquitination and clearance by a lysosomal process requiring components of the endosomal-sorting complex required for transport. Conversely, Nedd4 down-regulation increases α-synuclein content. In yeast, disruption of the Nedd4 ortholog Rsp5p decreases α-synuclein degradation and enhances inclusion formation and α-synuclein toxicity. In human brains, Nedd4 is present in pigmented neurons and is expressed especially strongly in neurons containing Lewy bodies. Thus, ubiquitination by Nedd4 targets α-synuclein to the endosomal-lysosomal pathway and, by reducing α-synuclein content, may help protect against the pathogenesis of Parkinson disease and other α-synucleinopathies.
منابع مشابه
Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson's disease
Parkinson's disease is a neurodegenerative disorder, characterized by accumulation and misfolding of α-synuclein. Although the level of α-synuclein in neurons is fundamentally linked to the onset of neurodegeneration, multiple pathways have been implicated in its degradation, and it remains unclear which are the critical ubiquitination enzymes that protect against α-synuclein accumulation in vi...
متن کاملRole of Nedd4-2 and polyubiquitination in epithelial sodium channel degradation in untransfected renal A6 cells expressing endogenous ENaC subunits.
Amiloride-sensitive epithelial sodium channels (ENaC) are responsible for transepithelial Na(+) transport in the kidney, lung, and colon. The channel consists of three subunits (alpha, beta, and gamma). In Madin-Darby canine kidney (MDCK) cells and Xenopus laevis oocytes transfected with all three ENaC subunits, neural precursor cell-expressed developmentally downregulated protein (Nedd4-2) pro...
متن کاملE3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3
Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3...
متن کاملUbiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process.
Connexin43 is degraded by the proteasomal as well as the lysosomal pathway with ubiquitin playing a role in both degradation pathways. So far, no ubiquitin protein ligase has been identified for any of the connexins. By using pull-down assays, here we show binding of a ubiquitin protein ligase, Nedd4, to the C-terminus of connexin43. This observation was confirmed in vivo by coimmunoprecipitati...
متن کاملPhosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development
Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 41 شماره
صفحات -
تاریخ انتشار 2011